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Abstract. We present a method that allows for the discovery of communities within graphs of arbitrary
size in times that scale linearly with their size. This method avoids edge cutting and is based on notions of
voltage drops across networks that are both intuitive and easy to solve regardless of the complexity of the
graph involved. We additionally show how this algorithm allows for the swift discovery of the community
surrounding a given node without having to extract all the communities out of a graph.

PACS. 89.75.Fb Structures and organization in complex systems – 89.75.Hc Networks and genealogical
trees

1 Introduction

The possibility of automatically discovering communities
in large network systems opens a promising set of new
research areas in a number of knowledge domains. From
informal social networks that can be discovered through
their communication patterns (email spectroscopy refer-
ence) to genetic clusters that lie hidden in the biological
literature (gene communities reference) the unveiling of
community structures within these networks allows for the
investigation of information flow within organizations, the
discovery of causal effects in complex gene networks and
the dynamics of virus propagation in computer networks.

A central issue in the automatic discovery of commu-
nities is the type of algorithms to be used with very large
graphs, many of which display a scale free structure. Not
only are there problems with the definition of commu-
nities per se, but also with the speed with which these
algorithms can uncover these communities.

By finding community structure within a network we
mean that a graph can be divided into groups so that
edges appear within a group much more often than across
two groups. But this apparently natural definition of com-
munity is problematic if a node connects two clusters that
have about the same number of edges. In this case if be-
comes hard to tell to which cluster the node belongs. Fur-
thermore, large graphs often possess a hierarchical com-
munity structure and hence the number of communities in
a graph depends on the level at which the graph is being
partitioned.

Concerning the type of algorithms that have been used
to discover community structure, a recent one that has
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been used is based on the idea of betweenness centrality,
or betweenness, first proposed by Freeman [1]. The be-
tweenness of an edge is defined as the number of shortest
paths that traverse it. This property distinguishes inter-
community edges, which link many vertices in different
communities and have high betweenness, from intra-com-
munity edges, whose betweenness is low. The original al-
gorithm, developed by Girvan and Newman [3], was also
extended to gene community discovery by Wilkinson and
Huberman [4,5], who partition a graph into discrete com-
munities of nodes using random sampling techniques. In
these cases, the time involved to discover the community
structure of the graph scales as O(n3).

More recently, Newman and Girvan [2] proposed a dif-
ferent technique, which focuses on currents flowing on
edges of a network in order to discover communities.In
this edge cutting algorithm the time involved, is of or-
der O(n4), with n the number of nodes in the graph. This
is because it first calculates a matrix inverse, which usu-
ally takes O(n3) time and then it computes the voltage
vector, V , for each possible source/sink pair resistor net-
works. These polynomial scalings make these algorithms
hard to use when computing the community structure of
very large graphs.

In the computer science literature, there are a number
of fast heuristics, such as “FM-Mincut” [6,7] that can clus-
ter a graph in linear time. However, since their approach
consists in breaking up a graph by recursively cutting it
so as to end up with the desired number of partitions,
they are inefficient when trying to find out the commu-
nity around a given node.

In this paper we present a different method that
allows for the discovery of communities within graphs
of arbitrary size in times that scale linearly with their
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size (O(V + E)). This method avoids edge cutting and is
based on notions of voltage drops across networks that are
both intuitive and easy to solve regardless of the complex-
ity of the graph involved. We additionally show how this
algorithm allows for the discovery of a community sur-
rounding a given node without having to extract all the
communities out of a graph.

In what follows we present the algorithm in the con-
text of a very simple problem, and then extend it to the
general case. We then apply it to problems that have been
considered earlier using much slower algorithms, such as
membership in Karate clubs and the discovery of confer-
ences within US college football data. Finally we exhibit
the power of our method in the discovery of communi-
ties around given nodes without having to compute the
full community structure of the graph, and we test it on
email data collected from HP laboratories. A final section
discusses these results and outlines possible applications.

2 A graph as an electric circuit

We start by exhibiting the workings of this algorithm in
the simplest problem, i.e, how to divide a graph into two
communities. We then extend our method to more gen-
eral n-community graphs. Consider a graph G = (V, E).
Suppose we already know that node A and B belong to dif-
ferent communities, which we call G1 and G2 (we will talk
later what if we do not have this information beforehand).
The idea is that we imagine each edge to be a resistor with
the same resistance, and we connect a battery between A
and B so that they have fixed voltages, say 1 and 0. Hav-
ing made these assumptions the graph can be viewed as
an electric circuit with current flowing through each edge
(resistor). By solving Kirchhoff equations we can obtain
the voltage value of each node, which of course should
lie between 0 and 1. We claim that, from a node’s voltage
value we are able to judge whether it belongs to G1 or G2.
More specifically, we can say a node belongs to G1 if its
voltage is greater than a certain threshold, say 0.5, and it
belongs to G2 if its voltage is less than that threshold.

2.1 Why it works

First let us consider the simplest case that node C has only
one neighbor D, so logically C should belong to the same
community as D (Fig. 2). Our idea indeed applies to this
case. Because no current can flow through the edge CD,
the two endpoints must have the same voltage, thus they
belong to the same community.

Next we consider the case that node C connects to two
neighbors D and E. Because the edges CD and CE have
the same resistance, we must have VC = (VD + VE)/2.
Hence if D and E belong to the same community, i.e., VD

and VE both lie above or below the threshold, then VC

lying between VD and VE should be above or below the
threshold as well, therefore belonging to the same com-
munity as D and E, which makes sense. On the other
hand, if D and E belong to different communities, then it

Current flow

High voltage Low voltage

Fig. 1. Current flows from left to right, thereby building a
voltage difference. Physically thinking, because nodes inside a
community are densely connected, their voltages tend to be
close. A big voltage gap happens about halfway between the
two communities, where the edges are sparse and the local
resistance is large.

A B

C

D

Fig. 2. A node with degree 1.

is comparatively hard to tell which community C belongs
to (VC might be near the threshold), but this is exactly
where ambiguity arises - a node has connections with more
than one communities.

Last we consider the most general case: C connects to
n neighbors D1, . . . , Dn. The Kirchhoff equations tell us
the total current flowing into C should sum up to zero,
i.e.,

n∑
i=1

Ii =
n∑

i=1

VDi − VC

R
= 0, (1)
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where Ii is the current flowing from Di to C. Thus

VC =
1
n

n∑
i=1

VDi . (2)

That is, the voltage of a node is the average of its neigh-
bors. If the majority of C’s neighbors belongs to a commu-
nity which has voltage greater than the threshold, then VC

tends to exceed the threshold as well, hence our method
tends to classify C into that community. 1

3 Kirchhoff equations in the general form

Following equation (2), the Kirchhoff equations of a n-
node circuit can be written as:

V1 = 1, (4)
V2 = 0, (5)

Vi =
1
ki

∑
(i,j)∈E

Vj =
1
ki

∑
j∈G

Vj aij for i = 3, . . . , n, (6)

where ki is the degree of node i and aij is the adjacency
matrix of the graph. Without loss of generality, we have
labelled the nodes in such a way that the battery is at-
tached to node 1 and 2, which we call poles, accordingly
equations (4, 5). Equation (6) is a set of linear equations
of n − 2 variables V3, . . . , Vn that can be put into a more
symmetrical form:

Vi =
1
ki

n∑
j=3

Vj aij +
1
ki

ai1 for i = 3, . . . , n. (7)

Define

V =




V3

...
Vn


 , B =




a33

k3
. . .

a3n

k3
...

...
an3

kn
. . .

ann

kn


 , C =




a31

k3
...

an1

kn


 ,

(8)
then the Kirchhoff equations can be further put into a
matrix form

V = BV + C, (9)

which has the unique solution

V = (I − B)−1C. (10)

In general it takes O(n3) time to solve a set of equa-
tions like equation (10). However, we can actually cut the
time down to O(V + E), as described in the next section.

1 Our method can be easily extended to weighted graphs. All
we need to do is to set each edge’s conductivity proportional
to its weight:

Rij = w−1
ij . (3)

The average appearing in equation (2) becomes weighted av-
erage accordingly.

Before closing we point out that if we define

L =




k3 −a34 · · · −a3n

−a43 k4 · · · −a4n

· · · · · ·
−an3 −an4 · · · kn


 , D =




a31

...
an1


 , (11)

then the Kirchhoff equations can also be written as

LV = D, (12)

which has the unique solution

V = L−1D. (13)

Interestingly enough, L is the Laplacian matrix of the
subgraph of G containing nodes 3, . . . , n. The well-known
spectral partitioning method partitions the graph based
on the eigenvector of the second smallest eigenvalue of
G’s Laplacian matrix [8–10]. We point out however that
our method does not compute the eigenvectors of G.

4 Solving Kirchhoff equations in linear time

We first set V1 = 1, V2 = · · · = Vn = 0 in O(V ) time. Start-
ing from node 3, we consecutively update a node’s voltage
to the average voltage of its neighbors, according to equa-
tion (2). The updating process ends when we get to the
last node n. We call this a round. Because any node i has
ki neighbors, one has to spend an amount of O(ki) time
calculating its neighbor average, thus the total time spent
in one round is O(

∑n
i=3 ki) = O(E). After repeating the

updating process for a finite number of rounds, one reaches
an approximate solution within a certain precision, which
does not depend on the graph size n but only depends on
the number of iteration rounds. In other words, to obtain
a certain precision, say 0.01, one only needs to repeat, say,
100 rounds, no matter how large the graph is, so the total
running time is always O(V + E).

To show conceptually the fast convergence of the algo-
rithm, we expand equation (10) into a series:

V =
∞∑

m=0

BmC. (14)

Now if we define

f(V ) = BV + C (15)

then

f (r)(V ) =
r−1∑
m=0

BmC + BrC. (16)

As r → 0 the remainder → 0, so we see the iteration
algorithm amounts to a simple cutoff of the power series.
The convergence speed is determined by the matrix norm
||B|| which is usually insensitive to dim(B) = O(V ).
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Fig. 3. Zachary’s karate club. This figure is from Newman and
Girvan [2].

5 A two-community example: Zachary’s
karate club

We tested our algorithm against the friendship network
data from Zachary’s karate club study [12]. The graph in-
cludes two communities of roughly equal size (Fig. 3). The
results of our linear time algorithm are shown in Figure 4.

In the figures, a node is represented as a vertical line
at the abscissa equal to its voltage, and is shown as a
short-dashed line if it belongs to the first community, or
a long-dashed line if it belongs to the second, based on
Zachary’s real data. If our algorithm works, the two types
of lines should separate at the two ends. This is indeed
the case for the first three examples, when the external
voltage is added between a pair of nodes lying in differ-
ent communities. We also show in the last panel how the
algorithm fails when the poles lie in the same community.

After obtaining the complete voltage spectrum two
critical questions remain to be answered:

– How to pick the two poles so that they lie in different
communities?

– What threshold should be used to separate the two
communities?

The first question is hard because we do not have any
prior information about the graph and the problem has to
be solved in linear time. We first describe a heuristic that
works although inconsistently, and then present a better
statistical method in the next section.

Because nodes are densely connected inside a commu-
nity, the average distance between two nodes chosen from
one community is generally shorter than the average dis-
tance between two nodes chosen from different communi-
ties. Thus, there is a high probability that two far apart
nodes sit in different communities, qualifying for the poles.

To find a far apart pair of nodes one can use the follow-
ing linear-time method. First randomly pick a node, then
find the node farthest from it, using a simple breadth-first
search which takes time O(V +E). If more than one node
qualifies, pick any of them. Next, use another breadth-first
search to find the node farthest from the second node, and

so on. After a few steps this procedure would identify a
pair of nodes very far away.

The diameter of the graph is defined by the largest
distance of all pairs. The graph of the karate club has di-
ameter 5. All pairs of nodes with this distance apart indeed
belong to different communities. One example (16, 17) is
shown in Figure 4b.

The second question, i.e. what threshold to use in or-
der to separate the two communities, is easier to answer.
Because edges are sparser between two communities, the
local resistivity should be large compared to the local re-
sistivity within the two communities. Thus the voltage
drops primarily at the junction (see Fig. 1) between com-
munities. This suggests placing the threshold at the largest
voltage gap near the middle. Note that the global largest
gap often appears at the two ends of the voltage spectrum
(see e.g. Figs. 4b and c), but it does not make sense to cut
there at all, which would divide the graph into two ex-
tremely asymmetrical communities, one of which has only
one or two nodes. Of course this is not what we want.

To be more definitive, we now define rigorously the
term “near the middle”. We distinguish two cases:
1. Dividing the graph into exactly two equal-sized com-
munities.

We simply cut at the right middle gap. The median-
selection problem can be done in O(V ) time by a good
selection algorithm [11].
2. Finding communities of roughly the same size, which
for the karate club example implies ≈ 34/2 = 17 nodes
each.

We define a tolerance to describe the range of allowed
community sizes. A tolerance 0.2 means we only search for
communities of the size 17± 20%, which is (14, 21). First
we sort the voltage values. Then we find the the largest
gap among the middle 21 − 14 = 7 gaps and cut there.
Note that the sort can be done in O(V ) time by using a
standard linear time sort, e.g. counting sort [11], which
applies to our problem since the voltage can only take a
finite number of values (101 choices for precision 0.01).
The solid lines in Figure 4 were found this way.

We emphasize that this method does not always work,
as illustrated in Figure 5.

6 Choosing poles randomly

A statistical method can be used to avoid the “poles prob-
lem” instead of solving it. The idea is to randomly pick
two poles, apply the algorithm to divide the graph into
two communities, and repeat it for many times (the to-
tal time is still O(V + E)). About one half of the results
would give correct results, for the poles would happen to
lie in different communities, while the other half would
give incorrect results. If we now improve our pole-picking
method by only choosing two nodes that are not neighbors
(i.e., there is no edge between them), then the probability
that our randomly chosen poles lie in different communi-
ties becomes higher than a half, suggesting the majority
of the results is correct. Thus we should be able to use a
majority vote to determine the communities.



F. Wu and B.A. Huberman: Finding communities in linear time: a physics approach 335

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

Fig. 4. Voltage spectrum for the two community example. In the four panels the battery is hooked up to nodes (a) 1 and 34;
(b) 16 and 17; (c) 12 and 26; and (d) 32 and 33. The algorithm runs 100 iteration rounds to reach the precision <0.01. Short-
dashed lines and long-dashed lines distinguish different communities (based on real data). Each graph is cut into two halves
at the biggest gap near the middle (tolerance = 0.2), which we marked out with a solid line. As can be seen, the algorithm
correctly recognizes the two communities when the two poles are in different communities (a–c), and fails when they belong to
the same community.

(a) (b)

Fig. 5. (a) The largest distance happens across two communi-
ties. (b) The largest distance can happen inside a community
sometimes.

We tested our method against the karate club data.
Each time we randomly picked two nodes whose dis-
tance ≥2, and then ran the algorithm to find two com-
munities. We repeated the process 50 times to obtain
100 groups altogether, among which 50 groups contained
node 16 (16 has no special meaning – we arbitrarily chose
it). We counted, for each node, how many times it ap-
peared in the same group as node 16, the maximal possi-
ble value being 50 and the minimal value 0. The result is
shown as a bar graph in Figure 6. Comparing the graph
with the real data we see that those nodes in node 16’s
community indeed all have high votings (above the hori-
zontal line in Fig. 6).

 0

10

20

30

40
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 0  5  10  15  20  25  30

Fig. 6. The number of times a node appears in the same group
as node 16. There are altogether 50 groups containing node 16.

7 Graphs with more than one community

We now extend our method to n-community graphs. We
test our algorithm against the US college football data
studied by Girvan and Newman [3]. A total of 115 teams
are divided into 13 “conferences” containing around 8 to
12 teams each. Our task is to find all those conferences
(communities).
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0  0.2  0.4  0.6  0.8  1
Fig. 7. The voltage spectrum when the battery is hooked up to node 51 (Washington) and node 88 (Tulsa). Two groups are
identified at the ends by dashed lines.

As we proceeded in the karate club case, we first ran-
domly pick two poles whose distance ≥2, then apply our
algorithm to get the voltage spectrum. (Note that the
probability that two poles belong to the same community
decreases as the number of communities increases, roughly
in the manner 1/m, where m is the number of communi-
ties.) We set the tolerance to be 0.5, which means that
we only search for communities whose size is in the range
(115/13)± 50%, or between 4 and 13, roughly.

To be more precise, we sort all 115 voltage values in
an increasing order and label them as 0 = V1 ≤ V2 ≤
· · · ≤ V115 = 1. We then measure the gaps V6 − V5, V7 −
V6, . . . , V14−V13 one by one to pick out the largest one, say
V9 −V8, which indicates a group of nodes having voltages
V1, . . . , V8. Similarly, we obtain a group of nodes at the
V115 end. The two groups thus found are both candidates
for the 13 communities we are looking for. An example is
shown in Figure 7.

We repeated the process 50 times to collect 100 candi-
dates. We then found out all the groups containing a spe-
cific node to apply a majority vote, just like what we did
before to 2-community graphs. The specific node can be
chosen rather freely, but to use most information, we chose
the one that appears most frequently in the 100 groups
(frequency test takes O(V ) time). An example of such a
majority vote is shown in Figure 8. After we found the first
community this way, we again picked a node in the rest of
the graph which appears most frequently, and applied a
majority vote to all groups containing that node in order
to find the second community. Repeating this procedure
13 times, we were able to find out all 13 communities.

8 Finding the community of a given node

We can further save time if we are only required to find
the community of a given node instead of all communities.
To this end, instead of randomly picking two nodes at a
time, we fix the given node as one pole, and choose the
second pole to be another random node that is at least a
distance 2 away from the first one. The rest steps (setting
the tolerance, calculating voltages, cutting through the
biggest gap, etc.) remain the same. By doing so each round
we are guaranteed to acquire a group containing the given
node, so we can further reduce the total number of rounds
from 50 to, say, 20, which gives us 20 candidates, sufficient
for the majority vote.

We also tested our method against the HP labs email
data, which was collected from a roughly power-law net-
work consisting of 396 nodes. We joined two nodes with an
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Fig. 8. The number of times a node appears in the same group
as node 0 (Brigham Young). There are altogether 15 groups
containing node 0. In the figure, eight nodes lie above the
threshold, namely node 0 (Brigham Young), 4 (New Mexico),
9 (San Diego State), 16 (Wyoming), 23 (Utah), 41 (Colorado
State), 93 (Air Force), and 104 (Nevada Las Vegas). They are
exactly the members of the Mountain West conference.

edge if the they exchanged more than 30 emails a month.
As an example, we tried to find out the closest colleagues
of the node “Jaap”. Our results show a total number of
20 nodes to lie above the threshold. Comparing this result
with the communities extracted from the email data, we
discovered that all these nodes belong to the same labo-
ratory as does the node Jaap, as was indeed the case.

Remark: Distance information is not sufficient to detect
the community of a given node. One cannot simply pick
out the nodes within a radius d from the given node and
say they form a community, because

1. Two nodes separated by a short distance need not to be
in the same community. In our last example, 57 nodes
have distance ≤2 from Jaap, among which only 27 be-
longs to Jaap’s lab.

2. For a small-world network, even the number of second
neighbors or third neighbors can be very large. In our
last example Jaap has 157 neighbors within a distance
3, which is already about 40% of the total size.

3. Two nodes with a large distance apart can still be in
the same community. For example, “JShan” is among
one of the 20 nodes found by our algorithm but has a
distance 3 away from Jaap, which is quite large.
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9 Other interpretations of voltage

In our 2-community example the voltage is regarded as an
index indicating which community a node belongs to. Its
absolute value has no special meaning, for we can freely
change its range from [0, 1] to any other range.

Despite its clear physical meaning, we can reinterpret
the voltage as a weight function measuring to what ex-
tent the node belongs to a community. For example, if we
set the voltage range to [−1, 1], we can then say a node
“strongly” belongs to the −1 community if its voltage is
−0.9, or a node “weakly” belongs to the 1 community if
its voltage is 0.2, etc.

This second interpretation of voltage inspires us to try
other possible choices of weight functions. The voltage, be-
ing a scalar, can only separate two communities because
the real line only has two directions. If we generalize how-
ever our weight function to a vector, we can then achieve
extra dimensions to separate more communities.

For example, consider the 3-community graph in Fig-
ure 9. Suppose we have already found three poles dispersed
in three communities. We assign each pole a unit-length
vector weight in such a way that the angle between any
two of the them is exactly 120 degrees, shown in Figure 9
as A, B and C. Those vectors have the nice properties
A + B = −C, A + C = −B and B + C = −A. Thus, if a
node is strongly connected to, say, communities A and B
but not to C, then there is a strong signal to separate the
node from community C (because A + B = −C). Also, if
a node connects to all three communities, we see that the
relation A + B + C = 0 indeed reflects the obscurity of
the node’s belonging.

After we have fixed the vector weights of the three
poles, we can continue with our method to solve Kirch-
hoff equations. We only need to replace the sums in equa-
tion (6) by vector sums. Once we solve out the vector
weights of all nodes, we can tell a node belongs which
community according to its pointing direction in the 2-
dimensional plane. For example, if a node’s vector weight
is pointing basically upward then we can say it belongs to
community A. Hence vector weights allow us to separate
three communities at a time.

While one might wish to further extend the method to
higher dimensional spaces to separate more communities
at a time, we point out that we have not yet succeeded
in finding a symmetrical set of vectors in three or higher
dimensional spaces.

There is one more interesting probabilistic interpreta-
tion of voltage [13]: When a unit voltage is applied be-
tween a and z, making Va = 1 and Vz = 0, the voltage
Vx at any point x �= a, z represents the probability that a
walker starting from x will return to a before reaching z.
There is also a probabilistic interpretation of current.

10 Discussion

In this paper we presented a method that allows for the
discovery of communities within graph of arbitrary size in
times that scale linearly with its size. The method avoids

A

B C

A

B C

Fig. 9. A graph made of three communities. The three sources
lie in different communities. The angle between any two of the
weight vectors A, B and C is 120 degree.

edge cutting altogether and is based on notions of voltage
drops across networks that are both intuitive and easy to
solve regardless of the complexity of the graph involved.
Additionally, this method allows for the discovery of a
community surrounding a given node without having to
extract all the communities out of a graph.

We then tested the algorithm by applying it to several
problems such as membership in karate clubs and the dis-
covery of conferences within US college football data. We
also show how it can be used to discover of communities
around given nodes by working with a graph of email data
collected from HP laboratories.

The reason behind the speed of this method lies in
its focus on communities themselves and not on their hi-
erarchical structures. In contrast, Newman’s betweenness
method [3] detects not only the communities but also the
complete hierarchy tree using much longer times. While
our method lacks the ability to find the hierarchy tree,
it also saves a lot of time since it does not need to find
out all the big communities before looking for the small
ones. In fact, it can identify the community of any given
node, without knowing the full structure of the graph or
the composition of other communities.

A possible defect of our method is that we have to
specify the number of communities we wish to divide the
graph into, a piece of information which one does not
often have beforehand. A natural solution would be to
first divide the graph into two big communities and then
break them down into smaller ones by recursively applying
the method described before. Unfortunately, the statisti-
cal method of attaching the battery to random sites over
the graph works poorly when the graph is not “divisible”
enough, and this will happen whenever the graph itself
is a big community, and thus not divisible, or when the
graph can be divided into two parts in many ways (“too
divisible”), each having about the same contribution to
the majority vote (Fig. 10).

In order to explain why our statistical method works
poorly in the second case, consider the graph shown in
Figure 10b, which is composed of four communities, A,
B, C and D. Suppose AB, AC, BD and CD are loosely
connected by some inter community edges but not AD and
BC. If we happen to choose two poles separately in A and
B, then our algorithm would tend to divide the graph into
two parts: AC and BD. However, we have a roughly equal



338 The European Physical Journal B

?

?

A

C

B

D
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Fig. 10. Graph not divisible. (a) A graph that is densely con-
nected everywhere; (b) A graph made of four communities that
are about the same size (inter-community edges not shown).

chance to choose two poles in A and C, which would imply
the division AB and CD. Thus our statistical method
becomes puzzled as to where to cut.

We emphasize that, the reason our statistical method
would fail sometimes is due to the ambiguity of the graph
itself. In our previous example, any algorithm would and
should hesitate whether to cut the graph into AB/CD
or AC/BD. A good algorithm should be able to yield at
least one reasonable result. In fact, if we are just inter-
ested in finding one solution, no matter which, we could
always apply the quick-and-dirty method by choosing two
poles far away. This would lead to a reasonable solution. In
this sense, our method might better be taken as a graph
partitioning method rather than a community detecting
method.

In closing we point out a number of possible extensions
of our method that could make it even more effective
when dealing with complex graphs. The first one is a
better statistical method that still works well when the
graph is “too divisible”. Second, one could also search for
better weight functions and a better definition of average
other than the one in equation (6). Third, there is infor-
mation in the complete voltage spectrum that has not yet
been fully exploited. For example, nodes belonging to the
same community usually concentrate closely in the spec-
trum, and yet the voltages between the two dashed lines in

Figure 7 were simply discarded. Finally, one could use the
result of a majority vote to evaluate the correctness of the
partition.

In spite of lack of these extensions we believe that the
algorithm we have presented is fast and useful when trying
to find communities within large graphs or around a single
node.

Fang Wu thanks Zhao Wu and Li Zhang for some useful dis-
cussions.
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